Pertidaksamaankedua: Pembuat nol: . Kemudian, kita buat garis bilangan dan kita tentukan tanda dari setiap daerah pada garis bilangan dengan cara kita uji titik. karena tanda pertidaksamaan kita adalah , maka pada garis bilangan kita ambil daerah yang bernilai negatif, yaitu . Oleh karena itu, irisan dari penyelesaian pertama dan kedua adalah
Tentukan himpunan penyelesaian dari pertidaksamaan berikut! 2x – 5 > 3 Jawab 2x – 5 > 3 Jadi himpunan penyelesaiannya adalah {x x 4}. - Jangan lupa komentar & sarannya Email nanangnurulhidayatTentukanpenyelesaian dari pertidaksamaan 3x-4/2x+4
PembahasanBeberapa sifat yang perlu diperhatikan dalam menyelesaikan pertidaksamaan adalah sebagai berikut. Tanda pertidaksamaan tidak berubah jika pada ruas kiri dan kanan ditambah atau dikurang dengan bilangan negatif atau bilangan positif. Tanda pertidaksamaan tidak berubah jika pada ruas kiri dan kanan dikali atau dibagi dengan bilangan positif. Tanda pertidaksamaan berubah atau dibalik jika pada ruas kiri dan kanan dikali atau dibagi dengan bilangan negatif. Dari aturan di atas, diperoleh perhitungan sebagai berikut. Dengan demikian himpunan penyelesaiannya adalah Jadi, himpunan penyelesaian dari pertidaksamaan adalah .Beberapa sifat yang perlu diperhatikan dalam menyelesaikan pertidaksamaan adalah sebagai berikut. Dari aturan di atas, diperoleh perhitungan sebagai berikut. Dengan demikian himpunan penyelesaiannya adalah Jadi, himpunan penyelesaian dari pertidaksamaan adalah .
Penyelesaiansoal di atas menggunakan konsep pertidaksamaan linear satu variabel. Penyelesaian dari pertidaksamaan −5 ≤ 2x − 5 < 5 yaitu: −5 ≤ 2x − 5 < 5 −5 + 5 ≤ 2x − 5 + 5 < 5 + 5 (ketiga ruas ditambahkan 5) 0 ≤ 2x < 10 0/2 ≤ 2x/2 < 10/2 (ketiga ruas dibagi 2) 0 ≤ x < 5 Jadi himpunan penyelesaiannya adalah {0 ≤ x < 5 PembahasanPerhatikan perhitungan berikut ini! 2 x 2 − 5 x + 3 2 x − 3 x − 1 ​ > > ​ 0 0 ​ 2 x − 3 x ​ = = ​ 0 2 3 ​ ​ atau x − 1 x ​ = = ​ 0 1 ​ Garis pembuat nolnya sebagai berikut Uji titik x = 0 → y = 2 0 2 − 5 0 + 3 = 3 x = 1 , 25 → y = 2 1 , 25 2 − 5 1 , 25 + 3 = − 0 , 125 x = 2 → y = 2 2 2 − 5 2 + 3 = 1 Karena tanda pertidaksamaannya > maka daerah penyelesaiannya yang diambil adalah yang positif, yaitu x < 1 atau x > 2 3 ​ . Dengan demikian, penyelesaian pertidaksamaan 2 x 2 − 5 x + 3 > 0 adalah x < 1 atau x > 2 3 ​ .Perhatikan perhitungan berikut ini! atau Garis pembuat nolnya sebagai berikut Uji titik Karena tanda pertidaksamaannya maka daerah penyelesaiannya yang diambil adalah yang positif, yaitu atau . Dengan demikian, penyelesaian pertidaksamaan adalah atau .